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ABSTRACT
We have often heard that data is the new oil. In particular,
extracting information from semi-structured textual docu-
ments on the Web is key to realize the Linked Data vision.
Several attempts have been proposed to extract knowledge
from textual documents, extracting named entities, classi-
fying them according to pre-defined taxonomies and disam-
biguating them through URIs identifying real world entities.
As a step towards interconnecting the Web of documents via
those entities, different extractors have been proposed. Al-
though they share the same main purpose (extracting named
entity), they differ from numerous aspects such as their un-
derlying dictionary or ability to disambiguate entities. We
have developed NERD, an API and a front-end user inter-
face powered by an ontology to unify various named entity
extractors. The unified result output is serialized in RDF
according to the NIF specification and published back on
the Linked Data cloud. We evaluated NERD with a dataset
composed of five TED talk transcripts, a dataset composed
of 1000 New York Times articles and a dataset composed of
the 217 abstracts of the papers published at WWW 2011.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: [Natural Language Process-
ing - Language parsing and understanding]

General Terms
Measurement, Performance, Experimentation, Web

Keywords
Named Entity extractors, Information extraction, Linked
Data, Evaluation

1. INTRODUCTION
The Web of Data is often illustrated as a fast growing

cloud of interconnected dataset representing information about
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barely everything [6]. The Web hosts also millions of semi-
structured texts such as scientific papers, news articles as
well as forum and archived mailing list threads or (micro-
)blog posts. This information has usually a rich semantic
structure which is clear for the author but that remains
mostly hidden to computing machinery. Named entity and
information extractors aim to bring such a structure from
those free texts. They provide algorithms for extracting se-
mantic units identifying the name of people, organizations,
locations, time references, quantities, etc. and classifying
them according to predefined schema, increasing discover-
ability (e.g. through faceted search), reusability and the
utility of information.

Since the 90’s, an increasing emphasis has been given to
the evaluation of NLP techniques. Hence, the Named En-
tity Recognition (NER) task has been developed as an es-
sential component of the Information Extraction field. Ini-
tially, these techniques focused on identifying atomic infor-
mation unit in a text, named entities, later on classified into
predefined categories (also called context types) by classi-
fication techniques, and linked to real world objects using
web identifiers. Such a task is called Named Entity Disam-
biguation. Knowledge bases affect the disambiguation task
in several ways, because they provide the final disambigua-
tion point where the information is linked. Recent methods
leverage knowledge bases such as DBpedia [3], Freebase1 or
YAGO [21] since they contain many entries corresponding
to real world entities and classified according to exhaustive
classification schemes. A certain number of tools have been
developed to extract structured information from text re-
sources classifying them according to pre-defined taxonomies
and disambiguating them using URIs. In this work, we aim
to evaluate tools which provide such an online computation:
AlchemyAPI2, DBpedia Spotlight3, Evri4, Extractiv5, Lu-
pedia6, OpenCalais7, Saplo8, Wikimeta9, Yahoo! Content
Analysis (YCA)10 and Zemanta11. They represent a clear

1
http://www.freebase.com/

2
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3
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4
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5
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6
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7
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8
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9
http://www.wikimeta.com
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http://developer.yahoo.com/search/content/V2/contentAnalysis.
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opportunity for the Linked Data community to increase the
volume of interconnected data. Although these tools share
the same purpose – extracting semantic units from text –
they make use of different algorithms and training data.
They generally provide a potential similar output composed
of a set of extracted named entities, their type and poten-
tially a URI disambiguating each named entity. The output
vary in terms of data model used by the extractors. Hence,
we propose the Named Entity Recognition and Disambigua-
tion (NERD) framework which unifies the output results of
these extractors, lifting them to the Linked Data Cloud us-
ing the new NIF specification.

These services have their own strengths and shortcom-
ings but, to the best of our knowledge, few scientific eval-
uations have been conducted to understand the conditions
under which a tool is the most appropriate one. This paper
attempts to fill this gap. We have performed quantitative
evaluations conducted on three different datasets covering
different type of textual documents: a dataset composed of
transcripts of five TED12 talks, a dataset composed of 1000
news articles from The New York Times13 and a dataset
composed of the 217 abstracts of the papers published at
WWW 2011 14. We present statistics to underline the be-
havior of such extractors in different scenarios and group
them according to the NERD ontology. We have developed
the NERD framework, available at http://nerd.eurecom.fr to
perform systematic evaluation of NE extractors.

The remainder of this paper is organized as follows. In
section 2, we introduce a factual comparison of the named
entity extractors investigated in this work. We describe the
NERD framework in section 3 and we highlight the impor-
tance to have an output compliant with the Linked Data
principles in section 4. Then, we describe the experimental
results we obtained in section 5 and in section 6, we propose
an overview on Named Entity recognition and disambigua-
tion techniques. Finally, we give our conclusions and outline
future work in section 7.

2. FACTUAL COMPARISON OF
NAMED ENTITY EXTRACTORS

The NE recognition and disambiguation tools vary in terms
of response granularity and technology used. As granular-
ity, we define the way how the extraction algorithm works:
One Entity per Name (OEN) where the algorithm tokenizes
the document in a list of exclusive sentences, recognizing the
dot as a terminator character, and for each sentence, detects
named entities; and One Entity per Document (OED) where
the algorithm considers the bag of words from the entire doc-
ument and then detects named entities, removing duplicates
for the same output record (NE, type, URI). Therefore, the
result set differs from the two approaches.

Table 1 provides an extensive comparison that take into
account the technology used: algorithms used to extract
NE, supported languages, ontology used to classify the NE,
dataset for looking up the real world entities and all the
technical issues related to the online computation such as
the maximum content request size and the response format.
We also report whether a tool provides the position where
an NE is found in the text or not. We distinguish four cases:

12
http://www.ted.com

13
http://www.nytimes.com

14
http://www.www2011india.com

char offset considering the text as a sequence of characters,
it reports the char index where the NE starts and the length
(number of chars) of the NE; range of chars considering the
text as a sequence of characters, it reports the start index
and the end index where the NE appears; word offset the
text is tokenized considering any punctuation, it reports the
word number after the NE is located (this counting does not
take into account the punctuation); POS offset the text is
tokenized considering any punctuation, it reports the num-
ber of part-of-a-speech after the NE is located.

We performed an experimental evaluation to estimate the
max content chunk supported by each API, creating a sim-
ple application that is able to send to each extractor a text
of 1KB initially. In case that the answer was correct (HTTP
status 20x), we performed one more test increasing of 1 KB
the content chunk. We iterated this operation until we re-
ceived the answer “text too long”. Table 1 summarizes the
factual comparison of the services involved in this study.
The * means the value has been estimated experimentally
(as the content chunk), + means a list of other sources, gen-
erally identifiable as any source available within the Web,
finally N/A means not available.

3. THE NERD FRAMEWORK
NERD is a web framework plugged on top of various NER

extractors. Its architecture follows the REST principles [7]
and includes an HTML front-end for humans and an API
for computers to exchange content in JSON (another serial-
ization of NERD output will be detailed in the section 4).
Both interfaces are powered by the NERD REST engine.

3.1 The NERD Data Model
We propose the following data model that encapsulates

the common properties for representing NERD extraction
results. It is composed of a list of entities for which a label,
a type and a URI is provided, together with the mapped type
in the NERD taxonomy, the position of the named entity,
the confidence and relevance scores as they are provided by
the NER tools. The example below shows this data model
(for the sake of brevity, we use the JSON syntax):

"entities ": [{
"entity ":"Tim Berners -Lee",
"type ":" Person",
"uri":" http :// dbpedia.org/resource/

Tim_berners_lee",
"nerdType ":" http :// nerd.eurecom.fr/ontology#

Person",
"startChar ":30,
"endChar ":45,
"confidence ":1,
"relevance ":0.5

}]

3.2 The NERD REST API
The REST engine runs on Jersey15 and Grizzly16 tech-

nologies. Their extensible frameworks enable to develop
several components and NERD is composed of 7 modules
namely authentication, scraping, extraction, ontology map-
ping, store, statistics and web. The authentication takes as
input a FOAF profile of a user and links the evaluations with
the user who performs them (we are freezing an OpenID im-
plementation and it will replace soon the simple authentica-

15
http://jersey.java.net

16
http://grizzly.java.net
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tion system working right now). The scraping module takes
as input the URI of an article and extracts all its raw text.
Extraction is the module designed to invoke the external
service APIs and collect the results. Each service provides
its own taxonomy of named entity types it can recognize.
We therefore designed the NERD ontology which provides
a set of mappings between these various classifications. The
ontology mapping is the module in charge to map the clas-
sification type retrieved to our ontology. The store module
saves all evaluations according to the schema model we de-
fined in the NERD database. The statistic module enables
to extract data patterns form the user interactions stored in
the database and to compute statistical scores such as the
Fleiss Kappa score and the precision measure. Finally, the
web module manages the client requests, the web cache and
generates HTML pages.

Plugged on the top of this engine, there is an API inter-
face17. It is developed following the REST principles and it
has been implemented to enable programmatic access to the
NERD framework. It follows the following URI scheme (the
base URI is http://nerd.eurecom.fr/api):

/document : GET, POST, PUT methods enable to fetch, sub-
mit or modify a document parsed by the NERD frame-
work;

/user : GET, POST methods enable to insert a new user to
the NERD framework and to fetch account details;

/annotation/{extractor} : POST method drives the annota-
tion of a document. The parametric URI allows to
pilot the extractors supported by NERD;

/extraction : GET method allows to fetch the output de-
scribed in section 3.1;

/evaluation : GET method allows to retrieve a statistic in-
terpretation of the extractor behaviors.

3.3 The NERD Ontology
Although these tools share the same goal, they use differ-

ent algorithms and different dictionaries which makes hard
their comparison. We have developed the NERD ontology,
a set of mappings established manually between the tax-
onomies of NE types. Concepts included in the NERD ontol-
ogy are collected from different schema types: ontology (for
DBpedia Spotlight, Lupedia, and Zemanta), lightweight tax-
onomy (for AlchemyAPI, Evri, and Yahoo!) or simple flat
type lists (for Extractiv, OpenCalais, Saplo, and Wikimeta).
The NERD ontology tries to merge the linguistic commu-
nity needs and the logician community ones: we developed
a core set of axioms based on the Quaero schema [8] and we
mapped similar concepts described in the other scheme. The
selection of these concepts has been done considering the
greatest common denominator among them. The concepts
that do not appear in the NERD namespace are sub-classes
of parents that end-up in the NERD ontology. This ontology
is available at http://nerd.eurecom.fr/ontology. To summarize,
a concept is included in the NERD ontology as soon as there
are at least two extractors that use it. The NERD ontology
becomes a reference ontology for comparing the classifica-
tion task of NE extractors. We show an example mapping
among those extractors below: the City type is considered

17
http://nerd.eurecom.fr/api/application.wadl

as being equivalent to alchemy:City, dbpedia-owl:City,
extractiv:CITY, opencalais:City, evri:City while being
more specific than wikimeta:LOC and zemanta:location.

nerd:City a rdfs:Class ;
rdfs:subClassOf wikimeta:LOC ;
rdfs:subClassOf zemanta:location ;
owl:equivalentClass alchemy:City ;
owl:equivalentClass dbpedia -owl:City ;
owl:equivalentClass evri:City ;
owl:equivalentClass extractiv:CITY ;
owl:equivalentClass opencalais:City .

3.4 The NERD UI
The user interface18 is developed in HTML/Javascript. Its

goal is to provide a portal where researchers can find infor-
mation about the NERD project, the NERD ontology, and
common statistics of the supported extractors. Moreover,
it provides a personalized space where a user can create a
developer or a simple user account. For the former account
type, a developer can navigate through a dashboard, see his
profile details, browse some personal usage statistics and get
a programmatic access to the NERD API via a NERD key.
The simple user account enables to annotate any web docu-
ments via its URI. The raw text is first extracted from the
web source and a user can select a particular extractor. Af-
ter the extraction step, the user can judge the correctness
of each field of the tuple (NE, type, URI, relevant). This
is an important process which gives to NERD human feed-
backs with the main purpose of evaluating the quality of the
extraction results collected by those tools [17]. At the end
of the evaluation, the user sends the results, through asyn-
chronous calls, to the REST API engine in order to store
them. This set of evaluations is further used to compute
statistics about precision measures for each tool, with the
goal to highlight strengths and weaknesses and to compare
them [18]. The comparison aggregates all the evaluations
performed and, finally, the user is free to select one or more
evaluations to see the metrics that are computed for each
service in real time.

4. NIF: AN NLP INTERCHANGE FORMAT
The NLP Interchange Format (NIF) is an RDF/OWL-

based format that aims to achieve interoperability between
Natural Language Processing (NLP) tools, language resources
and annotations. The NIF specification has been released in
an initial version 1.0 in November 2011 and describes how in-
teroperability between NLP tools, which are exposed as NIF
web services can be achieved. Extensive feedback was given
on several mailing lists and a community of interest19 was
created to improve the specification. Implementations for 8
different NLP tools (e.g. UIMA, Gate ANNIE and DBpedia
Spotlight) exist and a public web demo20 is available.

In the following, we will first introduce the core concepts
of NIF, which are defined in a String Ontology21 (STR). We
will then explain how NIF is used in NERD. The resulting
properties and axioms are included into a Structured Sen-
tence Ontology22 (SSO). While the String Ontology is used

18
http://nerd.eurecom.fr

19
http://nlp2rdf.org/get-involved

20
http://nlp2rdf.lod2.eu/demo.php

21
http://nlp2rdf.lod2.eu/schema/string

22
http://nlp2rdf.lod2.eu/schema/sso



Figure 1: NIF URI schemes: Offset (top) and
context-hashes (bottom) are used to create identi-
fiers for strings

to describe the relations between strings (i.e. Unicode char-
acters), the SSO collects properties and classes to connect
strings to NLP annotations and NER entities as produced
by NERD.

4.1 Core Concepts of NIF
The motivation behind NIF is to allow NLP tools to ex-

change annotations about documents in RDF. Hence, the
main prerequisite is that parts of the documents (i.e. strings)
are referenceable by URIs, so that they can be used as sub-
jects in RDF statements. We call an algorithm to create
such identifiers URI Scheme: For a given text t (a sequence
of characters) of length |t| (number of characters), we are
looking for a URI Scheme to create a URI, that can serve as
a unique identifier for a substring s of t (i.e. |s| ≤ |t|). Such
a substring can (1) consist of adjacent characters only and
it is therefore a unique character sequence within the text,
if we account for parameters such as context and position or
(2) derived by a function which points to several substrings
as defined in (1).

NIF provides two URI schemes, which can be used to rep-
resent strings as RDF resources. We focus here on the first
scheme using offsets. In the top part of Figure 1, two triples
are given that use the following URI as subject:

http://www.w3.org/DesignIssues/LinkedData.html#

offset_717_729

According to the above definition, the URI points to a sub-
string of a given text t, which starts at character index 717
until the index 729 (counting all characters). NIF currently
mandates that the whole string of the document has to be
included in the RDF output as an rdf:Literal to serve as
the reference point, which we will call inside context for-
malized using an OWL class called str:Context. The term
document would be inappropriate to capture the real inten-
tion of this concept as we would like to refer to an arbitrary
grouping of characters forming a unit, which could also be
applied to a paragraph or a section and is highly dependent
upon the wider context in which the string is actually used
such as a Web document reachable via HTTP.

To appropriately capture the intention of such a class,
we will distinguish between the notion of outside and inside
context of a piece of text. The inside context is easy to
explain and formalise, as it is the text itself and therefore it

provides a reference context for each substring contained in
the text (i.e. the characters before or after the substring).
The outside context is more vague and is given by an outside
observer, who might arbitrarily interpret the text as a “book
chapter” or a “book section”.

The class str:Context now provides a clear reference point
for all other relative URIs used in this context and blocks
the addition of information from a larger (outside) context
by definition. For example, str:Context is disjoint with
foaf:Document since labeling a context resource as a doc-
ument is an information which is not contained within the
context (i.e. the text) itself. It is legal, however, to say
that the string of the context occurs in (str:occursIn) a
foaf:Document. Additionally, str:Context is a subclass
of str:String and therefore its instances denote Unicode
text as well. The main benefit to limit the context is that
an OWL reasoner can now infer that two contexts are the
same, if they consist of the same string, because an inverse-
functional data type property (str:isString) is used to at-
tach the actual text to the context resource.

:offset_0_26546 a str:Context ;
#the exact retrieval method is left underspecified

str:occursIn <http ://www.w3.org/DesignIssues/
LinkedData.html > ;

# [...] are all 26547 characters as rdf:Literal
str:isString "[...]" .

:offset_717_729 a str:String ;
str:referenceContext :offset_0_26546 .

A complete formalisation is still work in progress, but the
idea is explained here. The NIF URIs will be grounded
on Unicode Characters (especially Unicode Normalization
Form C23. For all resources of type str:String, the universe
of discourse will then be the words over the alphabet of
Unicode characters sometimes called σ ∗. Perspectively, we
hope that this will allow for an unambiguous interpretation
of NIF by machines.

Within the framework of RDF and the current usage of
NIF for the interchange of output between NLP tools, the
definition of the semantics is sufficient to produce a working
system. However, problems arise if additional interoperabil-
ity with Linked Data or fragment identifiers and ad-hoc re-
trieval of content from the Web is demanded. The actual re-
trieval method (such as content negotiation) to retrieve and
validate the content for #offset_717_729_Semantic%20Web or
its reference context is left underspecified as is the relation
of NIF URIs to fragment identifiers for MIME types such as
text/plain (see RFC 514724). As long as such issues remain
open, the complete text has to be included as RDF Literal.

4.2 Connecting String to Entities
For NERD, three relevant concepts have to be expressed

in RDF and were included into the Structured Sentence On-
tology (SSO): OEN, OED and NERD ontology types.

One Entity per Name (OEN) can be modeled in a straight-
forward way, by introducing a property sso:oen, which con-
nects the string with an arbitrary entity.

:offset_717_729 sso:oen dbpedia:Semantic_Web .

One Entity per Document (OED). As document is an out-
side interpretation of a string, the notion of context in NIF

23
http://www.unicode.org/reports/tr15/#Norm_Forms counted in

Code Units http://unicode.org/faq/char_combmark.html#7
24

http://tools.ietf.org/html/rfc5147



has to be used. The property sso:oec is used to attach en-
tities to a given context. We furthermore add the following
DL-Axiom:

sso:oec ⊇ str:referenceContext−1 ◦ sso:oen

As the property oen contains more specific information, oec
can be inferred by the above role chain inclusion. In case the
context is enlarged, any materialized information attached
via the oec property needs to be migrated to the larger con-
text resource.

The connection between NERD types and strings is done
via a linked data URI, which disambiguates the entity. Over-
all three cases can be distinguished: In case, the NER ex-
tractor has provided a linked data URI to disambiguate the
entity, we simply re-use it as in the following example:

# this URI points to the string "W3C"
:offset_23107_23110

rdf:type str:String ;
str:referenceContext :offset_0_26546 ;
sso:oen dbpedia:W3C ;
str:beginIndex "23107" ;
str:endIndex "23110" .

dbpedia:W3C rdf:type nerd:Organization .

If, however, the NER extractor provides no disambiguation
link at all or just a non-linked data URI for the entity
(typically, the foaf:homepage of an organization such as
http://www.w3.org/ ), we plan to mint a new linked data
URI for the respective entity that could then be further
sameAs with other identifiers in a data reconciliation pro-
cess.

5. EVALUATIONS
We performed a quantitative experiment using three dif-

ferent datasets: a dataset composed of transcripts of five
TED talks (different category of talks), a dataset composed
of 1000 news articles from The New York Times (collected
from 09/10/2011 to 12/10/2011), and a dataset composed
of the 217 abstracts of the papers published at WWW 2011
conference. The aim of these evaluations is to assess how
these extractors perform in different scenarios, such as news
articles, user generated content and scientific papers. The
total number of document is 1222, with an average word
number per document equal to 549. Each document was
evaluated using 6 extractors supported by the NERD frame-
work25. The final number of entities detected is 177, 823 and
the average of unique entity number per document is 20.03.
Table 2 shows statistics about grouped view according to
the source documents.

We define the following variables: the number nd of eval-
uated documents, the number nw of words, the total num-
ber ne of entities, the total number nc of categories and nu

URIs. Moreover, we compute the following measures: word
detection rate r(w, d), i.e. the number of words per docu-
ment, entity detection rate r(e, d), i.e. the number of enti-
ties per document, the number of entities per word r(e, w),
the number of categories per entity r(c, e) (this measure has
been computed removing not relevant labels such as “null”
or “LINKED OTHER”) and the number of URIs per entity
r(u, e).

25At the time this evaluation has been conducted Lupedia,
Saplo, Wikimeta and YCA were not part of the NERD
framework.

WWW2011 TED NYTimes

nd 217 5 1,000
nw 38,062 13,381 62,0567
rw 175.4 2,676.2 620.567
ne 12,266 1,441 164,116
re 56.53 288.2 164.1

Table 2: Statistics about the three dataset used in
the quantitative experiment, grouped according to
the source where documents were collected.

5.1 User Generated Content
In this experiment, we focus on the extractions performed

by all tools for 5 TED talk transcripts. The goal is to find
out NE extraction ratio for user generated content, such
as speech transcripts of videos. First, we propose general
statistics about the extraction task and then, we focus on
the classification, showing statistics grouped according to
the NERD ontology. DBpedia Spotlight classifies each re-
source according three different schema (see Table 1). For
this experiment, we consider only the results which belong
to the DBpedia ontology. The total number of documents
is 5, with an overall number of total words equal to 13, 381.
The word detection rate per document r(w, d) is equal to
2, 676.2 with an overall number of entities equal to 1, 441,
and the r(e, d) is 288.2. Table 3 shows the statistics about
the computation results for all extractors. DBpedia Spot-
light is the extractor which provides the highest number of
NE and disambiguated URIs. These values show the ability
from this extractor to locate NE and to exploit the large
cloud of LOD resources. In parallel, it is crucial noting that
it is not able to classify these resources, although it uses a
deep classification schema. All the extractors show high abil-
ity for the classification task, except Zemanta as shown by
the r(c, e). Contrarily, Zemanta shows strong ability to dis-
ambiguate NE via URI identification, as shown by r(u, e).
It is worth noting OpenCalais and Evri have almoust the
same performances of Zemanta. The last part of this exper-
iment consists in aligning all the classification types provided
by these extractors, while performing the analysis of TED
talk transcripts, using the NERD ontology. For the sake of
brevity, we report all the grouping results according to 6
main concepts: Person, Organization, Country, City, Time
and Number. Table 4 shows the comparison results. Alche-
myAPI classifies a higher number of Person, Country and
City than all the others. In addition, OpenCalais obtains
good performances to classify all the concepts except Time
and Number. It is worth noting that Extractiv is the only
extractor able to locate and classify Number and Time. In
this grouped view, we consider all the results classified with
the 6 main classes and we do not take into account all po-
tentially inferred relationships. This is why the Evri results
contrast with what is showed in the Table 3. Indeed, Evri
provides a precise classification about Person such as Jour-
nalist, Physicist, Technologist but it does not describe the
same resource as a sub-classes of the Person axiom.

5.2 Scientific Documents
In this experiment, we focus on the extraction performed

by all tools for the 217 abstract papers published at the
WWW 2011 conference, with the aim to seek NE extrac-
tion patterns for scientific contributions. The total number



ne nc nu r(e, d) r(e, w) r(c, e) r(u, e)

AlchemyAPI 141 141 71 28.2 0.01 1 0.504
DBpedia Spotlight 810 0 624 162 0.06 0 0.77
Evri 120 120 113 24 0.009 1 0.942
Extractiv 60 53 22 12 0.004 0.883 0.367
OpenCalais 163 136 157 32.6 0.012 0.834 0.963
Zemanta 50 17 49 10 0.003 0.34 0.98

Table 3: Statistics about computation results for the sources coming from TED talks of all extractors used
in the comparison.

AlchemyAPI DBpedia Spotlight Evri Extractiv OpenCalais Zemanta

Person 42 - 10 6 27 4
Organization 15 - - - 20 1
Country 16 - 11 1 16 3
City 14 - 3 3 7 -
Time - - - 1 - -
Number - - - 5 - -

Table 4: Number of axioms aligned for all the extractors involved in the comparison according to the NERD
ontology for the sources coming from TED talks.

ne nc nu r(e, d) r(e, w) r(c, e) r(u, e)

AlchemyAPI 323 171 39 1.488 0.008 0.529 0.121
DBpedia Spotlight 3,699 0 1,062 17.04 0.097 0 0.287
Evri 282 282 167 1.299 0.007 1 0.592
Extractiv 1,345 725 415 6.198 0.035 0.539 0.309
OpenCalais 1,158 1,158 713 5.337 0.03 1 0.616
Zemanta 1,748 97 757 8.055 0.046 0.055 0.433

Table 5: Statistics about extraction results for the 217 abstract papers published at the WWW 2011 confer-
ence of all extractors used in the comparison.

AlchemyAPI DBpedia Spotlight Evri Extractiv OpenCalais Zemanta

Person 17 - 12 6 6 1
Organization 20 - 24 - 5 -
Country 9 - 8 14 7 6
City 4 - 3 8 9 -
Time - - - - - -
Number - - - 184 - -

Table 6: Number of axioms aligned for all the extractors involved in the comparison according to the NERD
ontology for the sources coming from the WWW 2011 conference.



of words is 13, 381, while the word detection rate per doc-
ument r(w, d) is equal to 175.40 and the total number of
recognized entities is 12, 266 with the r(e, d) equal to 56.53.
Table 5 shows the statistics of the computation results for
all extractors. DBpedia Spotlight keeps a high rate of NEs
extracted but shows some weaknesses to disambiguate NEs
with LOD resources. r(u, e) is equal to 0.2871, lesser than
is performance in the previous experiment (see section 5.1).
OpenCalais, instead, has the best r(u, e) and it has a con-
siderable ability to classify NEs. Evri performed in a similar
way as shown by the r(c, e). The last part of this experi-
ment consists in aligning all the classification types retrieved
by these extractors using the NERD ontology, aligning 6
main concepts: Person, Organization, Country, City, Time
and Number. Table 6 shows the comparison results. Alche-
myAPI still preserves the best result to classify named enti-
ties as Person. Instead, differently to what happened in the
previous experiment, Evri outperforms AlchemyAPI while
classifying named entities as Organization. It is important
to note that Evri shows an high number of NEs classified
using the class Person in this scenario, but does not explore
deeply the Person inference (as shown in the user generated
content experiment). OpenCalais has the best performance
to classify NEs according to the City class, while Extrac-
tiv shows reliability to recognize Country and, especially, to
classify Number.

5.3 News Articles
For this experiment, we collected 1000 news articles of

The New York Times from 09/10/2011 to 12/10/2011 and
we performed the extraction for the tools involved in this
comparison. The goal is to explore the NE extraction ratio
with this dataset and to assess commonalities and differences
with the previous experiments. The total number of words is
620, 567, while the word detection rate per document r(w, d)
is equal to 620.57 and the total number of recognized entities
is 164, 12 with the r(e, d) equal to 164.17. Table 7 shows the
statistics of the computation results for all extractors.

Extractiv is the tool which provides the highest number of
NEs. This score is considerably greater than what does the
same extractor in the other test scenarios (see section 5.1
and section 5.2), and it does not depend from the number
of words per document, as reported by r(e, w). In contrast,
DBpedia Spotlight shows a r(e, w) which is strongly affected
by the number of words: indeed, the r(e, w) is 0.048 lower
than the same score in the previous experiment. Although
the highest number of URIs detailed is provided by Open-
Calais, the URI detection rate per entity is greater for Ze-
manta, with a score equal to 0.577. Alchemy, Evri, and
OpenCalais confirm their reliability to classify NEs and its
detection score value r(c, e) is sensibly greater than all the
others. Finally, we propose the alignment of the 6 main
types recognized by all extractors using the NERD ontol-
ogy. Table 8 shows the comparison results. Differently to
what has been detailed previously, DBpedia Spotlight rec-
ognizes few classes, although this number is not compara-
ble with what performed by the other extractors. Zemanta
and DBpedia Spotlight increase classification performances
with respect to the experiments detailed in the two previous
test cases, obtaining a number of recognized Person which
is lower than one magnitude order. AlchemyAPI preserves
strong ability to recognize Person, but still shows great per-
formance to recognize City and significant scores for Orga-

nization and Country. OpenCalais shows meaningful results
to recognize the class Person and especially a strong abil-
ity to classify NEs with the label Organization. Extractiv
holds the best score for classifying Country and it is the only
extractor able to seek the classes Time and Number.

6. RELATED WORK
The Named Entity (NE) recognition and disambiguation

problem has been addressed in different research fields such
as NLP, Web mining and Semantic Web communities. All of
them agree on the definition of a Named Entity, which was
coined by Grishman et al. as an information unit described
by the name of a person or an organization, a location,
a brand, a product, a numeric expression including time,
date, money and percent found in a sentence [9]. One of the
first research papers in the NLP field, aiming at automat-
ically identifying named entities in texts, was proposed by
Rau [16]. This work relies on heuristics and definition of pat-
terns to recognize company names in texts. The training set
is defined by the set of heuristics chosen. This work evolved
and was improved later on by Sekine et al. [20]. A different
approach was introduced when Supervised Learning (SL)
techniques were used. The big disruptive change was the
use of a large dataset manually labeled. In the SL field,
a human being usually trains positive and negative exam-
ples so that the algorithm computes classification patterns.
SL techniques exploit Hidden Markov Models (HMM) [4],
Decision Trees [19], Maximum Entropy Models [5], Support
Vector Machines (SVM) [2] and Conditional Random Fields
(CRF) [13]. The common goal of these approaches is to rec-
ognize relevant key-phrases and to classify them in a fixed
taxonomy. The challenges with SL approaches is the un-
availability of such labeled resources and the prohibitive cost
of creating examples. Semi-Supervised Learning (SSL) and
Unsupervised Learning (UL) approaches attempt to solve
this problem by either providing a small initial set of labeled
data to train and seed the system [11], or by resolving the
extraction problem as a clustering one. For instance, a user
can try to gather named entities from clustered groups based
on the similarity of context. Other unsupervised methods
may rely on lexical resources (e.g. WordNet), lexical pat-
terns and statistics computed on large annotated corpus [1].

The NER task is strongly dependent on the knowledge
base used to train the NE extraction algorithm. Leveraging
on the use of DBpedia, Freebase and YAGO, recent meth-
ods, coming from Semantic Web community, have been in-
troduced to map entities to relational facts exploiting these
fine-grained ontologies. In addition to detect a NE and its
type, efforts have been spent to develop methods for disam-
biguating information unit with a URI. Disambiguation is
one of the key challenges in this scenario and its foundation
stands on the fact that terms taken in isolation are naturally
ambiguous. Hence, a text containing the term London may
refer to the city London in UK or to the city London in Min-

nesota, USA, depending on the surrounding context. Simi-
larly, people, organizations and companies can have multiple
names and nicknames. These methods generally try to find
in the surrounding text some clues for contextualizing the
ambiguous term and refine its intended meaning. Therefore,
a NE extraction workflow consists in analyzing some input
content for detecting named entities, assigning them a type
weighted by a confidence score and by providing a list of
URIs for disambiguation. Initially, the Web mining com-



ne nc nu r(e, d) r(e, w) r(c, e) r(u, e)

AlchemyAPI 17,433 17,443 3,833 17.44 0.028 1 0.22
DBpedia Spotlight 30,333 20 8,702 30.33 0.048 0.001 0.287
Evri 16,944 16,944 8,594 16.94 0.027 1 0.507
Extractiv 47,455 41,393 8,177 47.45 0.076 0.872 0.172
OpenCalais 23,625 23,625 12,525 23.62 0.038 1 0.53
Zemanta 9,474 4621 5,467 9.474 0.015 0.488 0.577

Table 7: Statistics about extraction results for the 1000 news articles published by The New York Times from
09/10/2011 to 12/10/2011 of all extractors used in the comparison.

AlchemyAPI DBpedia Spotlight Evri Extractiv OpenCalais Zemanta

Person 6,246 14 2,698 5,648 5,615 1,069
Organization 2,479 - 900 81 2,538 180
Country 1,727 2 1,382 2,676 1,707 720
City 2,133 - 845 2,046 1,863 -
Time - - - 123 1 -
Number - - - 3,940 - -

Table 8: Number of axioms aligned for all the extractors involved in the comparison according to the NERD
ontology for the sources collected from the The New York Times from 09/10/2011 to 12/10/2011.

munity has harnessed Wikipedia as the linking hub where
entities were mapped [12, 10]. A natural evolution of this
approach, mainly driven by the Semantic Web community,
consists in disambiguating named entities with data from
the LOD cloud. In [14], the authors proposed an approach
to avoid named entity ambiguity using the DBpedia dataset.

Interlinking text resources with the Linked Open Data
cloud becomes an important research question and it has
been addressed by numerous services which have opened
their knowledge to online computation. Although these ser-
vices expose a comparable output, they have their own strengths
and weaknesses but, to the best of our knowledge, few re-
search comparisons have been spent to evaluate them. The
creators of the DBpedia Spotlight service have compared
their service with a number of other NER extractors (Open-
Calais, Zemanta, Ontos Semantic API26, The Wiki Ma-
chine27, AlchemyAPI and M&W’s wikifier [15]) according
to an annotation task scenario. The experiment consisted
in evaluating 35 paragraphs from 10 news articles in 8 cate-
gories selected from the The New York Times and has been
performed by 4 human raters. The final goal was to cre-
ate wiki links and to provide a disambiguation benchmark
(partially, re-used in this work). The experiment showed
how DBpedia Spotlight overcomes the performance of other
services under evaluation, but its performances are strongly
affected by the configuration parameters. Authors under-
lined the importance to perform several set-up experiments
and to figure out the best configuration set for the specific
disambiguation task. Moreover, they did not take into ac-
count the precision of the NE and type.

We have ourselves proposed a first qualitative compari-
son attempt, highlighting the precision score for each ex-
tracted field from 10 news articles coming from 2 different
sources, The New York Times and BBC 28 and 5 different
categories: business, health, science, sport, world [18]. Due
to the news articles length, we face a very low Fleiss’s kappa

26
http://www.ontos.com

27
http://thewikimachine.fbk.eu/

28
http://www.bbc.com

agreement score: many output records to evaluate affected
the human rater ability to select the correct answer. In
this paper, we advance these initial experiments by provid-
ing a full generic framework powered by an ontology and
we present a large scale quantitative experiment focusing
on the extraction performances with different type of text:
user-generated content, scientific text, and news articles.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented NERD a web framework which

unifies 10 named entity extractors and lift the output result
to the Linked Data Cloud following the NIF specification.
To motivate NERD, we presented a quantitative compari-
son of 6 extractors in particular task, scenario and settings.
Our goal was to assess the performance variations accord-
ing to different kind of texts (news articles, scientific papers,
user generated content) and different text length. Results
showed that some extractors are affected by the word cardi-
nality and the type of text, especially for scientific papers.
DBpedia Spotlight and OpenCalais are not affected by the
word cardinality and Extractiv is the best solution to clas-
sify NEs according to “scientific” concepts such as Time and
Number.

This work has evidenced the need to follow up with such
systematic comparisons between NE extractor tools, espe-
cially using a large golden dataset. We believe that the
NERD framework we have proposed is a suitable tool to
perform such evaluations. In this work, the human eval-
uation has been conducted asking all participants to rate
the output results of these extractors. An important step
forward would be to investigate about the creation of an al-
ready labeled dataset of triples (NE, type, URI) and then
assessing how these extractors adhere to this dataset. Future
work will include a thorough comparison with the ESTER2
and CONLL-2003 datasets (datasets well-known in the NLP
community) studying how it may fit the need of comparing
those extractor tools and more importantly, how to combine
them. In terms of manual evaluation, Boolean decision is not
enough for judging all tools. For example, a named entity



type might not be wrong, but not precise enough (Obama is
not only a person, he is also known as the American Pres-
ident). Another improvement of the system is to allow the
input of additional items or correct miss-understanding or
ambiguous items. Finally, we plan to implement a “smart”
extractor service, which takes into account extraction evalu-
ations coming from all raters to assess new evaluation tasks.
The idea is to study the role of the relevance field in order to
create a set of not-discovered NE from one tool, but which
may be find out by other tools.
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C. Bizer. DBpedia Spotlight: Shedding Light on the
Web of Documents. In 7th International Conference
on Semantic Systems (I-Semantics), 2011.

[15] D. Milne and I. H. Witten. Learning to link with
Wikipedia. In 17th ACM International Conference on
Information and Knowledge Management (CIKM’08),
pages 509–518, Napa Valley, California, USA, 2008.

[16] L. Rau. Extracting company names from text. In 7th

IEEE Conference on Artificial Intelligence
Applications, volume i, pages 29–32, 1991.

[17] G. Rizzo and R. Troncy. NERD: A Framework for
Evaluating Named Entity Recognition Tools in the
Web of Data. In 10th International Semantic Web
Conference (ISWC’11), Demo Session, pages 1–4,
Bonn, Germany, 2011.

[18] G. Rizzo and R. Troncy. NERD: Evaluating Named
Entity Recognition Tools in the Web of Data. In
Workshop on Web Scale Knowledge Extraction
(WEKEX’11), pages 1–16, Bonn, Germany, 2011.

[19] S. Sekine. NYU: Description of the Japanese NE
system used for MET-2. In 7th Message
Understanding Conference (MUC-7), 1998.

[20] S. Sekine and C. Nobata. Definition, Dictionaries and
Tagger for Extended Named Entity Hierarchy. In 4th

International Conference on Language Resources and
Evaluation (LREC’04), Lisbon, Portugal, 2004.

[21] F. Suchanek, G. Kasneci, and G. Weikum. Yago: a
Core of Semantic Knowledge. In 16th International
Conference on World Wide Web (WWW’07), pages
697–706, Banff, Alberta, Canada, 2007.


